A Math Formula Extraction and Evaluation Framework for PDF Documents

Ayush Kumar Shah, Rochester Institute of Technology, USA Abhisek Dey, Rochester Institute of Technology, USA Richard Zanibbi, Rochester Institute of Technology, USA

{as1211, ad4529, rxzvcs}@rit.edu

Document and Pattern Recognition Lab

RIT Rochester Institute of Technology

Motivation: Information Retrieval

Mathematical Formula Extraction: Overview

Mathematical Formula Extraction: Overview

ScanSSD Output

Symbol Layout Tree (Output)

ScanSSD + SymbolScraper Output

SymbolScraper: Extracting Symbols in PDF

- Based on Apache PDFBox
- Avoids OCR in **born-digital** PDF documents and instead uses vector drawing commands in PDF
- Unicode, writing line position and attributes derived from PDF encoding
- 'em box' or underlying character outlines (glyphs) represent symbol outlines in a font as boxes

Unlike other methods, SymbolScraper uses glyphs to fine-tune bounding box locations

SymbolScraper: Extracting Symbols in PDF

- Glyphs and font scaling information used to obtain precise bounding box locations
- Compound characters (large braces, square roots, etc.) are formed of 2 or more characters

Correcting glyph origins

ScanSSD: Locating Formula Regions

- Scanning Single-Shot Detector, CNN which locates formula bounding boxes using a sliding window
- 600 dpi images broken into windows of 1200 x 1200 pixels, SSD applied in each window at 10% stride
- Non-Maximal Suppression selects the highest confidence regions from overlapping detections
- Wider default boxes sizes used with aspect ratios of 5, 7, and 10 -> increased recall

A window (in Blue) slides across the grid (in Red) (50% stride)

Default boxes around a grid point

7

ScanSSD: Locating Formula Regions

- A sliding window divides the page into windows which are processed by ScanSSD
- The partial predictions at the window-level are pooled together and the final regions are identified using pixel-wise voting (stitching)

• Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: European conference on computer vision. pp. 21–37. Springer (2016)

• Mali, P., Kukkadapu, P., Mahdavi, M., Zanibbi, R.: ScanSSD: Scanning Single Shot Detector for Mathematical Formulas in PDF Document Images. arXiv:2003.08005 [cs] (2020)

ScanSSD: Locating Formula Regions

Bottom: Window-level Predictions **Top:** Confidence masks

• Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: European conference on computer vision. pp. 21–37. Springer (2016)

• Mali, P., Kukkadapu, P., Mahdavi, M., Zanibbi, R.: ScanSSD: Scanning Single Shot Detector for Mathematical Formulas in PDF Document Images. arXiv:2003.08005 [cs] (2020)

QD-GGA: Recognizing Formula Structure (Parsing)

- **1. Construct** graph over CCs
- 2. Prune: Convert to LOS graph
- 3. Classify edges as merge/split and relationships, nodes as symbols
- 4. New LOS graph: detected symbols
- 5. Extract MST using Edmond's arborescence algorithm

Inputs

Outputs

Symbol Layout Tree (SLT)

SLT in MathML

SymbolScraper Results

Summary of SymbolScraper Accuracy

Hardware Specifications and Speed			
Storage	HDD		
Dataset Size	100 pages		
Total time	28 mins, 19 secs		
Average time	1.7 secs/page		

ScanSSD Results

Formula Detection Results for TFD-ICDAR2019

	$IOU \ge 0.75$			$IOU \ge 0.5$		
	Precision	Recall	F-score	Precision	Recall	F-score
ScanSSD	0.774	0.690	0.730	0.851	0.759	0.802
RIT 2	0.753	0.625	0.683	0.831	0.670	0.754
RIT 1	0.632	0.582	0.606	0.744	0.685	0.713
Mitchiking	0.191	0.139	0.161	0.369	0.270	0.312
Samsung*	0.941	0.927	0.934	0.944	0.929	0.936

*Used character information

Hardware Specifications and Speed		
Storage	HDD	
RAM	32 GB	
Graphics	Nvidia RTX 2080 Ti	
Processor	AMD Ryzen 7 2700	
Dataset Size	233 pages	
Total time	4 hrs, 33 mins, 31 secs	
Average time	70.4 secs/page	

QD-GGA Results

Formula Recognition Results for InftyMCCDB-2^[1] Test set

Metrics	Value
Structure rate	92.56
Structure + Classification rate	85.94

Hardware Specifications and Speed		
Storage	HDD	
RAM	32 GB	
Graphics	Nvidia GTX 1080	
Processor	Intel(R) Core(TM) i7-9700KF	
Dataset Size	6830 images	
Total time	26 mins, 25 secs	
Average time	232 ms/formula	

• [1] https://zenodo.org/record/3483048#.XaCwmOdKjVo

• Mali, P., Kukkadapu, P., Mahdavi, M., Zanibbi, R.: ScanSSD: ScanningSingleShot Detector for Mathematical Formulas in PDF Document Images. arXiv:2003.08005 [cs] (2020)

• Mahdavi, M.; Sun, L.; Zanibbi, R.: Visual Parsing with Query-Driven Global Graph Attention (QD-GGA). In Conference on Computer Vision and Pattern Recognition Workshops (2020)

Recognition Results Visualization (HTML)

MathSeer Pipeline Results Visualization

LgEval Extension: Error Visualization

Object Confusion Histograms

Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 95 incorrect targets, 1418 errors.

Errors organized by decreasing frequency

Specific instances where 'z' is misclassified as '2,' seen after clicking on the '22 errors' link

LgEval Extension: Error Visualization

Zoomed in: Specific instances where 'z' is misclassified as '2,' seen after clicking on the '22 errors' link

Conclusion and Future Work

- Open-source formula extraction pipeline for PDF documents
 - https://www.cs.rit.edu/~dprl/software.html

- PDF symbol extractor that identifies precise bounding box locations in born-digital PDFs
- A simple and effective algorithm for detection of math expressions using visual features alone
- Extended tools for visualizing recognition results and formula parsing errors
- ScanSSD-XYc: Unified page and window level merging using recursive XY Cuts avoiding NMS speeding up detection by 300 times approximately (included in the repository)

Future work

- **SymbolScraper:** Handle Type 3 Fonts and faster system for symbol extraction, better handling of compound characters
- Pipeline: End-to-End trainable system for detection and parsing

Thank You

This material is based on upon work supported by the Alfred P. Sloan Foundation under Grant No. G-2017-9827 and the National Science Foundation (USA) under Grant Nos. IIS-1717997 (MathSeer project) and 2019897 (MMLI project)

Thanks to R. Joshi, P. Mali, P. Kukkadapu, A. Keller, M. Mahdavi, and J. Diehl for their contribution to the formula extraction pipeline. Jian Wu provided the document collected used to evaluate SymbolScraper

Document and Pattern Recognition Lab